虽然编程是现代社会中最广泛适用的技能之一,但现代机器学习模型仍然无法对基本问题的解决方案。尽管重要的是,对评估代码生成令人惊讶的是,很少有效,并且难以准确地评估代码生成性能。为了满足这一挑战,我们介绍了一个用于代码生成的基准。与在更受限制的设置中的事先工作不同,我们的基准测试衡量模型采取任意自然语言规范的能力,并生成满意的Python代码。类似于公司如何评估候选软件开发人员,然后我们通过检查测试用例的生成代码来评估模型。我们的基准测试包括10,000个问题,从具有简单的单线解决方案来实现实质性算法挑战。我们在GitHub和我们的培训集上微调大型语言模型,我们发现语法错误的普遍性随着模型的提高而导致呈指数级递减。最近的模型如GPT-Neo可以通过大约20%的介绍性问题的测试用例,因此我们发现机器学习模型现在开始学习如何代码。随着自动代码生成的社会意义在未来几年增加,我们的基准可以提供跟踪进步的重要措施。
translated by 谷歌翻译
许多智力努力需要解决数学问题,但这种技能仍然超出了计算机的能力。为了测量机器学习模型中的这种能力,我们介绍了数学,这是一个12,500个挑战性竞争数学问题的新数据集。数学中的每个问题都有一个完整的逐步解决方案,可用于教授模型来生成答案派生和解释。为了促进未来的研究和提高数学准确性,我们还提供了一个大型辅助预制数据集,有助于教导模型数学的基本原则。尽管我们能够提高数学准确性,但我们的结果表明,即使有巨大的变压器模型,即使有巨大的变压器模型也是相对较低的。此外,我们发现,如果缩放趋势持续,则无法增加预算和模型参数计数对于实现强大的数学推理,这将是不切实际的。虽然缩放变压器正在自动解决大多数基于文本的任务,但缩放目前没有解决数学。为了在数学问题上进行更多牵引,我们可能需要更广泛的研究界的新算法进步。
translated by 谷歌翻译
Model compression via quantization and sparsity enhancement has gained an immense interest to enable the deployment of deep neural networks (DNNs) in resource-constrained edge environments. Although these techniques have shown promising results in reducing the energy, latency and memory requirements of the DNNs, their performance in non-ideal real-world settings (such as in the presence of hardware faults) is yet to be completely understood. In this paper, we investigate the impact of bit-flip and stuck-at faults on activation-sparse quantized DNNs (QDNNs). We show that a high level of activation sparsity comes at the cost of larger vulnerability to faults. For instance, activation-sparse QDNNs exhibit up to 17.32% lower accuracy than the standard QDNNs. We also establish that one of the major cause of the degraded accuracy is sharper minima in the loss landscape for activation-sparse QDNNs, which makes them more sensitive to perturbations in the weight values due to faults. Based on this observation, we propose the mitigation of the impact of faults by employing a sharpness-aware quantization (SAQ) training scheme. The activation-sparse and standard QDNNs trained with SAQ have up to 36.71% and 24.76% higher inference accuracy, respectively compared to their conventionally trained equivalents. Moreover, we show that SAQ-trained activation-sparse QDNNs show better accuracy in faulty settings than standard QDNNs trained conventionally. Thus the proposed technique can be instrumental in achieving sparsity-related energy/latency benefits without compromising on fault tolerance.
translated by 谷歌翻译
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译
Drawing from the resources of psychoanalysis and critical media studies, in this paper we develop an analysis of Large Language Models (LLMs) as automated subjects. We argue the intentional fictional projection of subjectivity onto LLMs can yield an alternate frame through which AI behaviour, including its productions of bias and harm, can be analysed. First, we introduce language models, discuss their significance and risks, and outline our case for interpreting model design and outputs with support from psychoanalytic concepts. We trace a brief history of language models, culminating with the releases, in 2022, of systems that realise state-of-the-art natural language processing performance. We engage with one such system, OpenAI's InstructGPT, as a case study, detailing the layers of its construction and conducting exploratory and semi-structured interviews with chatbots. These interviews probe the model's moral imperatives to be helpful, truthful and harmless by design. The model acts, we argue, as the condensation of often competing social desires, articulated through the internet and harvested into training data, which must then be regulated and repressed. This foundational structure can however be redirected via prompting, so that the model comes to identify with, and transfer, its commitments to the immediate human subject before it. In turn, these automated productions of language can lead to the human subject projecting agency upon the model, effecting occasionally further forms of countertransference. We conclude that critical media methods and psychoanalytic theory together offer a productive frame for grasping the powerful new capacities of AI-driven language systems.
translated by 谷歌翻译
This work presents a physics-informed deep learning-based super-resolution framework to enhance the spatio-temporal resolution of the solution of time-dependent partial differential equations (PDE). Prior works on deep learning-based super-resolution models have shown promise in accelerating engineering design by reducing the computational expense of traditional numerical schemes. However, these models heavily rely on the availability of high-resolution (HR) labeled data needed during training. In this work, we propose a physics-informed deep learning-based framework to enhance the spatial and temporal resolution of coarse-scale (both in space and time) PDE solutions without requiring any HR data. The framework consists of two trainable modules independently super-resolving the PDE solution, first in spatial and then in temporal direction. The physics based losses are implemented in a novel way to ensure tight coupling between the spatio-temporally refined outputs at different times and improve framework accuracy. We analyze the capability of the developed framework by investigating its performance on an elastodynamics problem. It is observed that the proposed framework can successfully super-resolve (both in space and time) the low-resolution PDE solutions while satisfying physics-based constraints and yielding high accuracy. Furthermore, the analysis and obtained speed-up show that the proposed framework is well-suited for integration with traditional numerical methods to reduce computational complexity during engineering design.
translated by 谷歌翻译
Utilizing autonomous drones or unmanned aerial vehicles (UAVs) has shown great advantages over preceding methods in support of urgent scenarios such as search and rescue (SAR) and wildfire detection. In these operations, search efficiency in terms of the amount of time spent to find the target is crucial since with the passing of time the survivability of the missing person decreases or wildfire management becomes more difficult with disastrous consequences. In this work, it is considered a scenario where a drone is intended to search and detect a missing person (e.g., a hiker or a mountaineer) or a potential fire spot in a given area. In order to obtain the shortest path to the target, a general framework is provided to model the problem of target detection when the target's location is probabilistically known. To this end, two algorithms are proposed: Path planning and target detection. The path planning algorithm is based on Bayesian inference and the target detection is accomplished by means of a residual neural network (ResNet) trained on the image dataset captured by the drone as well as existing pictures and datasets on the web. Through simulation and experiment, the proposed path planning algorithm is compared with two benchmark algorithms. It is shown that the proposed algorithm significantly decreases the average time of the mission.
translated by 谷歌翻译
Collecting sufficient labeled data for spoken language understanding (SLU) is expensive and time-consuming. Recent studies achieved promising results by using pre-trained models in low-resource scenarios. Inspired by this, we aim to ask: which (if any) pre-training strategies can improve performance across SLU benchmarks? To answer this question, we employ four types of pre-trained models and their combinations for SLU. We leverage self-supervised speech and language models (LM) pre-trained on large quantities of unpaired data to extract strong speech and text representations. We also explore using supervised models pre-trained on larger external automatic speech recognition (ASR) or SLU corpora. We conduct extensive experiments on the SLU Evaluation (SLUE) benchmark and observe self-supervised pre-trained models to be more powerful, with pre-trained LM and speech models being most beneficial for the Sentiment Analysis and Named Entity Recognition task, respectively.
translated by 谷歌翻译
We propose a novel deep neural network architecture to learn interpretable representation for medical image analysis. Our architecture generates a global attention for region of interest, and then learns bag of words style deep feature embeddings with local attention. The global, and local feature maps are combined using a contemporary transformer architecture for highly accurate Gallbladder Cancer (GBC) detection from Ultrasound (USG) images. Our experiments indicate that the detection accuracy of our model beats even human radiologists, and advocates its use as the second reader for GBC diagnosis. Bag of words embeddings allow our model to be probed for generating interpretable explanations for GBC detection consistent with the ones reported in medical literature. We show that the proposed model not only helps understand decisions of neural network models but also aids in discovery of new visual features relevant to the diagnosis of GBC. Source-code and model will be available at https://github.com/sbasu276/RadFormer
translated by 谷歌翻译
Saliency methods compute heat maps that highlight portions of an input that were most {\em important} for the label assigned to it by a deep net. Evaluations of saliency methods convert this heat map into a new {\em masked input} by retaining the $k$ highest-ranked pixels of the original input and replacing the rest with \textquotedblleft uninformative\textquotedblright\ pixels, and checking if the net's output is mostly unchanged. This is usually seen as an {\em explanation} of the output, but the current paper highlights reasons why this inference of causality may be suspect. Inspired by logic concepts of {\em completeness \& soundness}, it observes that the above type of evaluation focuses on completeness of the explanation, but ignores soundness. New evaluation metrics are introduced to capture both notions, while staying in an {\em intrinsic} framework -- i.e., using the dataset and the net, but no separately trained nets, human evaluations, etc. A simple saliency method is described that matches or outperforms prior methods in the evaluations. Experiments also suggest new intrinsic justifications, based on soundness, for popular heuristic tricks such as TV regularization and upsampling.
translated by 谷歌翻译